3.13.67 \(\int \frac {A+B x}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx\) [1267]

Optimal. Leaf size=204 \[ \frac {2 \sqrt {-b} B \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {2 \sqrt {-b} (B d-A e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}} F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {d+e x} \sqrt {b x+c x^2}} \]

[Out]

2*B*EllipticE(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*(-b)^(1/2)*x^(1/2)*(c*x/b+1)^(1/2)*(e*x+d)^(1/2)/e/c
^(1/2)/(1+e*x/d)^(1/2)/(c*x^2+b*x)^(1/2)-2*(-A*e+B*d)*EllipticF(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*(-
b)^(1/2)*x^(1/2)*(c*x/b+1)^(1/2)*(1+e*x/d)^(1/2)/e/c^(1/2)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {857, 729, 113, 111, 118, 117} \begin {gather*} \frac {2 \sqrt {-b} B \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} E\left (\text {ArcSin}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}}-\frac {2 \sqrt {-b} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1} (B d-A e) F\left (\text {ArcSin}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {b x+c x^2} \sqrt {d+e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x)/(Sqrt[d + e*x]*Sqrt[b*x + c*x^2]),x]

[Out]

(2*Sqrt[-b]*B*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d
)])/(Sqrt[c]*e*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) - (2*Sqrt[-b]*(B*d - A*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1
 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(Sqrt[c]*e*Sqrt[d + e*x]*Sqrt[b*x + c*
x^2])

Rule 111

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2*(Sqrt[e]/b)*Rt[-b/
d, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[
d*e - c*f, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !LtQ[-b/d, 0]

Rule 113

Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[Sqrt[e + f*x]*(Sqrt[
1 + d*(x/c)]/(Sqrt[c + d*x]*Sqrt[1 + f*(x/e)])), Int[Sqrt[1 + f*(x/e)]/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]), x], x] /
; FreeQ[{b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2/(b*Sqrt[e]))*Rt
[-b/d, 2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] &&
GtQ[c, 0] && GtQ[e, 0] && (PosQ[-b/d] || NegQ[-b/f])

Rule 118

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[1 + d*(x/c)]*
(Sqrt[1 + f*(x/e)]/(Sqrt[c + d*x]*Sqrt[e + f*x])), Int[1/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]*Sqrt[1 + f*(x/e)]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 729

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[x]*(Sqrt[b + c*x]/Sqrt[b
*x + c*x^2]), Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {A+B x}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx &=\frac {B \int \frac {\sqrt {d+e x}}{\sqrt {b x+c x^2}} \, dx}{e}+\frac {(-B d+A e) \int \frac {1}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx}{e}\\ &=\frac {\left (B \sqrt {x} \sqrt {b+c x}\right ) \int \frac {\sqrt {d+e x}}{\sqrt {x} \sqrt {b+c x}} \, dx}{e \sqrt {b x+c x^2}}+\frac {\left ((-B d+A e) \sqrt {x} \sqrt {b+c x}\right ) \int \frac {1}{\sqrt {x} \sqrt {b+c x} \sqrt {d+e x}} \, dx}{e \sqrt {b x+c x^2}}\\ &=\frac {\left (B \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x}\right ) \int \frac {\sqrt {1+\frac {e x}{d}}}{\sqrt {x} \sqrt {1+\frac {c x}{b}}} \, dx}{e \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}+\frac {\left ((-B d+A e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}\right ) \int \frac {1}{\sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}} \, dx}{e \sqrt {d+e x} \sqrt {b x+c x^2}}\\ &=\frac {2 \sqrt {-b} B \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {2 \sqrt {-b} (B d-A e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}} F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {d+e x} \sqrt {b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.84, size = 209, normalized size = 1.02 \begin {gather*} \frac {\frac {2 b B (b+c x) (d+e x)}{c}+2 i b B \sqrt {\frac {b}{c}} e \sqrt {1+\frac {b}{c x}} \sqrt {1+\frac {d}{e x}} x^{3/2} E\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right )|\frac {c d}{b e}\right )-2 i \sqrt {\frac {b}{c}} (b B-A c) e \sqrt {1+\frac {b}{c x}} \sqrt {1+\frac {d}{e x}} x^{3/2} F\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right )|\frac {c d}{b e}\right )}{b e \sqrt {x (b+c x)} \sqrt {d+e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x)/(Sqrt[d + e*x]*Sqrt[b*x + c*x^2]),x]

[Out]

((2*b*B*(b + c*x)*(d + e*x))/c + (2*I)*b*B*Sqrt[b/c]*e*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticE[I
*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)] - (2*I)*Sqrt[b/c]*(b*B - A*c)*e*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*
x^(3/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)])/(b*e*Sqrt[x*(b + c*x)]*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [A]
time = 0.70, size = 216, normalized size = 1.06

method result size
default \(\frac {2 \left (A \EllipticF \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) c e -B \EllipticF \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) c d -B \EllipticE \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b e +B \EllipticE \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) c d \right ) b \sqrt {-\frac {c x}{b}}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -c d}}\, \sqrt {\frac {c x +b}{b}}\, \sqrt {e x +d}\, \sqrt {x \left (c x +b \right )}}{e \,c^{2} x \left (c e \,x^{2}+b e x +c d x +b d \right )}\) \(216\)
elliptic \(\frac {\sqrt {x \left (e x +d \right ) \left (c x +b \right )}\, \left (\frac {2 A b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, \EllipticF \left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+x b d}}+\frac {2 B b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, \left (\left (-\frac {b}{c}+\frac {d}{e}\right ) \EllipticE \left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )-\frac {d \EllipticF \left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{e}\right )}{c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+x b d}}\right )}{\sqrt {x \left (c x +b \right )}\, \sqrt {e x +d}}\) \(322\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(A*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*c*e-B*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2
))*c*d-B*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*e+B*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^
(1/2))*c*d)*b*(-c*x/b)^(1/2)*(-(e*x+d)*c/(b*e-c*d))^(1/2)*((c*x+b)/b)^(1/2)*(e*x+d)^(1/2)*(x*(c*x+b))^(1/2)/e/
c^2/x/(c*e*x^2+b*e*x+c*d*x+b*d)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x + A)/(sqrt(c*x^2 + b*x)*sqrt(x*e + d)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.33, size = 294, normalized size = 1.44 \begin {gather*} -\frac {2 \, {\left (3 \, B c^{\frac {3}{2}} e^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right )\right ) + {\left (B c d + {\left (B b - 3 \, A c\right )} e\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right )\right )} e^{\left (-2\right )}}{3 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

-2/3*(3*B*c^(3/2)*e^(3/2)*weierstrassZeta(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b
*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)*e^(-3)/c^3, weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)*e^(-
2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e^
(-1)/c)) + (B*c*d + (B*b - 3*A*c)*e)*sqrt(c)*e^(1/2)*weierstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)*e^(
-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e
^(-1)/c))*e^(-2)/c^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B x}{\sqrt {x \left (b + c x\right )} \sqrt {d + e x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)**(1/2)/(c*x**2+b*x)**(1/2),x)

[Out]

Integral((A + B*x)/(sqrt(x*(b + c*x))*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x + A)/(sqrt(c*x^2 + b*x)*sqrt(x*e + d)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {A+B\,x}{\sqrt {c\,x^2+b\,x}\,\sqrt {d+e\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x)/((b*x + c*x^2)^(1/2)*(d + e*x)^(1/2)),x)

[Out]

int((A + B*x)/((b*x + c*x^2)^(1/2)*(d + e*x)^(1/2)), x)

________________________________________________________________________________________